

Mark Scheme (Results)

Summer 2013

GCE Statistics 2 (6684/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA037002 All the material in this publication is copyright © Pearson Education Ltd 2012

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

Question Number	Scheme	Marks
1. (a)	(1, 1, 1), (5, 5, 5), (1, 5, 5), (1, 5, 1) (1,1,1); (5,5,5); (1, 5, 5); (5, 1, 5); (5, 5, 1) (5, 1, 1); (1, 5, 1); (1, 1, 5)	B1 B1 (2)
(b)	r: 0 and 4 P(R = 0) = $\frac{9}{27}$ or $\frac{1}{3}$ P(R = 4) = $\frac{18}{27}$ or $\frac{2}{3}$	B1 M1d A1
		(3) [5]
	Notes	
(a)	 1st B1 for any two of the triples 2nd B1 for all 8 cases. No incorrect extras – condone repeats. Allow (1, 5, 5) 5) (x 3) instead of writing all three cases down 	(x 3) and (1, 1,
(b)	B1 for both values of r M1 d dependent on previous B1. For an attempt to evaluate one of the probabilities for r correctly e.g. for $r = 0$; $\left(\frac{2}{3}\right)^3 + \left(\frac{1}{3}\right)^3$ and for $r = 4$; $3 \times \left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right) + 3 \times \left(\frac{1}{3}\right) \times \left(\frac{2}{3}\right)^2$ Working must be shown. A1 for both values of r and their correct corresponding probabilities. Allow awrt 0.333 and 0.667 NB Correct answer with no working will gain B1M0A0	

Question Number	Scheme	Marks
2.		
(a)	F(2) = 1 gives: $\frac{1}{4} (2^3 - 4 \times 2^2 + 2k) = 1$	M1
	$\underline{k=6}$	A1 (2)
(b)	$f(y) = \frac{d}{dy} (F(y)) = \frac{1}{4} (3y^2 - 8y + "6")$	M1A1ft
	$f(y) = \begin{cases} \frac{1}{4} (3y^2 - 8y + 6) & 0 \le y \le 2\\ 0 & \text{otherwise} \end{cases}$	A1
		(3)
(c)	$P(Y > 1) = 1 - F(1) = 1 - \frac{1}{4} \left(1^3 - 4 \times 1^2 + k \right)$	M1
	$=\frac{1}{4}$ (o.e.)	A1
		(2) [7]
	Notes	
(a)	M1 for an attempt to use $F(2) = 1$. Clear attempt to form a linear equation for	or k
(b)	M1 for some correct differentiation $y^n \rightarrow y^{n-1}$	
	1 st A1ft for $3y^2 - 8y + 6''$, follow through their value of k or even k as a let	ter
	2^{nd} A1 for a fully correct solution including the 0 otherwise.	
(c)	M1 for clear use of $1 - F(y)$ or attempt at integrating $f(y)$; at least one co- correct coefficient, and using limit of 1 and 2	rrect term with
	A1 for $\frac{1}{4}$ or any exact equivalent	

Question Number	Scheme	Marks
3.	1 1 .	
(a)	$\left \frac{1}{2}(a+b)\right = 23$ and $\frac{1}{12}(b-a)^2 = 75$	B1B1
	$a+b=46$ and $b-a=\sqrt{12\times75}(=30)$	M1
	Adding gives $2b = 76$	M1
	$\underline{b} = 38$ and $\underline{a} = 8$	(6)
	<u>alternative</u> $\frac{1}{2}(a+b) = 23$ and $\frac{1}{12}(b-a)^2 = 75$	B1B1
	$a+b=46$ and hence $(46-2a)^2 = 900$ oe	M1
	$a^2 - 46a + 304 = 0$	
	(a-8)(a-38)=0	M1
	$\underline{b=38}$ and $\underline{a=8}$	A1 A1 (6)
(b)	P(23 < X < c) = 0.5 - 0.32 or c = 28.4 and prob = $\frac{5.4}{30}$	M1
	= <u>0.18</u>	A1 (2) [8]
	Notes	[*]
(a) (b)	2^{nd} B1for an easy one contect equation using given formulae 2^{nd} B1for any 2 correct equations for a and b using both 23 and 75 1^{st} M1for rearranging to get two linear equations in a and b or rearranging and substituting linear equation into quadratic. 2^{nd} M1for solving i.e. eliminating one variable leading to a linear equation in one variable or solving their quadratic correctly by any method. 1^{st} A1for $b = 38$ 2^{nd} A1for $a = 8$ SC If they get $b = 8$ and $a = 38$ or they give two sets of values and do not eliminate one then they can get B1B1M1M1A1A0M1for a correct method, e.g. a correct expression or seeing calculation for c and calculation for probabilityA1for 0.18 only	

Question Number	Scheme	Marks
4.		
(a)	$\int \mathbf{f}(x) \mathrm{d}x = k \left[3x + x^2 - \frac{x^3}{3} \right]$	M1
	$\int_{0}^{3} f(x) dx = 1 \text{ gives } k \left[\left(9 + 9 - \frac{27}{3} \right) - (0) \right] = 1$	M1
	So $k = \frac{1}{9}$ (*)	A1cso
(b)	f'(x) = k(2-2x) f'(x) = 0 implies x = 1 so mode = 1	(3) M1
	$1 (x) = 0 \text{ implies } x = 1 \text{ so } \underline{\text{mode} = 1}$	A1 (2)
(c)	$E(X) = \int_{0}^{1} \frac{1}{9} (3x + 2x^{2} - x^{3}) dx$	M1
	$= \frac{1}{9} \left[\frac{3x^2}{2} + \frac{2x^3}{3} - \frac{x^4}{4} \right]_0$	M1dA1
	$= \left\{ \frac{1}{9} \left[\left(\frac{3}{2} \times 9 + \frac{2}{3} \times 27 - \frac{81}{4} \right) - 0 \right] \right\} = \frac{5}{4}$	A1
(d)	Mean > mode	(4) M1
		(2) [11]
	Notes	
(a)	NB This is a 'Show that so working must be seen'	
	1 st M1 for some correct integration $x^n \rightarrow x^{n+1}$ for at least one term 2 nd M1 for some correct use of the limit 3 and at least implied use of limit 0 and p A1cso for correct solution with no incorrect working seen.	put =1
(b)	M1 for attempt to differentiate and putting = 0. At least one correctly differentiated <i>x</i> term. or for an alternative method for finding the maximum such as completing the square and selecting the corresponding <i>x</i> value	
	A1 for mode = 1	
(c)	1 st M1 for clear attempt to use $xf(x)$ with an intention of integrating (Integral signature limits. Must substitute in $f(x)$	gn enough)
	2 nd M1d dependent on 1st M being awarded. For some correct integrationat least term with the correct coefficient.	t one correct
	1 A1for fully correct (possibly un-simplified) integration. Ignore limits 2^{nd} A1for answer of 5/4 or 1.25 or some other exact equivalent	
(d)	 M1 for a comparison of mean and mode (ft their values of mode and mean). Do not allow median. A1 for positive skew only (provided this is compatible with their values and comparison of the statement of the	omparison)
Question		N 1
Number	Scneme	
5.	[X = number of customers joining the queue in the next 10 mins $\sim Po(3)$]	

Question Number	Scheme	Marks
(a)	$P(X = 4) = P(X \le 4) - P(X \le 3)$ or $\frac{e^{-3}3^4}{4!}$	M1
	0.8153 - 0.6472 = 0.1681 or 0.1680313 (awrt <u>0.168</u>)	A1 (2)
(b)	<i>Y</i> [= number of customers joining the queue in the next 20 mins] ~ Po(6) P($Y > 10$) = 1 - P($Y \le 10$)	B1 M1
	= 1 - 0.9574 = 0.0426(209) (awrt <u>0.0426</u>)	A1 (3)
(c)	P(T > 3.5) = 0.3	B1 (1)
(d)	$C \sim B(5, 0.3)$ P($C \ge 3$) = 1 – P($C \le 2$)	M1 M1
	= 1 - 0.8369 = 0.1631 (or 0.16308) (awrt <u>0.163</u>)	A1 (3)
(e)	P(Bethan is served in ≤ 4 minutes) = 0.8 (o.e.)	B1
	$J =$ number joining the queue in 4 mins has $J \sim Po(1.2)$	M1
	$P(J=0) = e^{-1.2} = 0.30119$	A1
	P(Bethan is served and $J = 0$) = $0.8 \times e^{-1.2} = 0.240955$ (awrt <u>0.241</u>)	A1
		(4) [13]
	Notes	
(a)	M1 for a correct method. May use incorrect λ A1 for awrt 0.168	
(b)	B1 for writing or using Po(6)	
	M1 for writing or using $1 - P(Y \le 10)$	
	A1 for awrt 0.0426	
(d)	1 st M1 for identifying that $C \sim B(5, 0.3)$. Follow through their 0.3. May be in 2 nd M1 for writing or using $1 - P(C \le 2)$	nplied
	A1 for awrt 0.163	
	SC if they use normal distribution they may get M0 M1 A0 if they find $P(C \ge C)$	2.5)
(e)	B1 for 0.8 for P(Bethan is served in the next 4 minutes)	
	M1 for identifying $Po(1.2)$	
	A1 for $e^{-1.2}$ or awrt 0.301	
	A1 for awrt 0.241	

Question Number	Scheme	Marks	
6. (a)	[X = the number of raisins in a mini-muffin] X ~ Po(8) e.g. $P(X \le 3) = 0.0424$, $P(X \le 13) = 0.9658$ so $P(X \ge 14) = 0.0342$ So Critical Region is $X \le 3$ or $X \ge 14$	B1 M1 A1 A1 (4)	
(b)	0.0424 + 0.0342 = <u>0.0766</u> (or better)	M1 A1 (2)	
(c)	$H_{o}: \lambda = 8 \text{ (or } \mu = 80) \qquad H_{1}: \lambda > 8 \text{ (or } \mu > 80)$ $[R = \text{ no. of raisins in 10 muffins. } R \sim \text{Po}(80).] \text{ Use } Y \sim \text{N}(80, 80)$ $P(R \ge 95) \simeq P(Y \ge 94.5)$ $= P\left(Z > \frac{94.5 - 80}{\sqrt{80}}\right)$ $= P(Z > 1.62) = 1 - 0.9474 = \text{ awrt} \underline{0.053}$ Probability is greater than 0.05 so not significant (accept H ₀) Insufficient evidence to support the <u>bakery's claim</u>	B1 M1A1 M1 M1 A1 M1 A1cso	
	<u>Or</u> insufficient evidence of an increase in the (mean) number of <u>raisins</u> per <u>muffin</u>	(8) [14]	
	Notes		
(a)	B1 for Po(8) seen or implied by use M1 for clear evidence of use of Po(8), may be implied by a correct CR (allow written as a probability statement) or a probability seen in part(b). If they give 3 and 14 1^{st} A1 for $X \le 3$ or $0 \le X \le 3$ or $0,1,2,3$ or [0,3] Allow any letter 2^{nd} A1 for $X \ge 14$ or $[14, \infty)$ condone $[14, \infty]$ Allow any letter These A marks must be for statements with X only – not in prob statements		
(b)	M1 for showing they are adding together the two probabilities that corresp or allow M1 A1for correct answer	M1 for showing they are adding together the two probabilities that correspond to their CR or allow M1 A1 for correct answer	
(c)	B1 for both hypotheses. Must be in terms of λ or μ , 8 or 80 can be swapped 1 st M1 for normal approx 1 st A1 E(Y) = 80 and Var(Y) = 80 (or correct st. dev seen somewhere) 2 nd M1 for use of a continuity correction 94.5 or 95.5 3 rd M1 Standardising using their mean and their sd, If they have not written down a mean and sd then these need to be correct here to award the mark. They must also use 94.5, 95.5 or 95 and find the correct area ie using 1 - P(Z ≤ "their 1.62") 2 nd A1 for awrt 0.053 or awrt 0.947 4 th M1 for a correct statement based on their probability and 0.05 3 rd A1 cso for a correct contextualised statement and a fully correct solution with no errors seen. Need either bakery's claim or <u>Raisins</u> and <u>muffin</u> NB If Found P(X=95) they can get B1 M1 A1 M0M0A0M0A0		
Question Number	Scheme	Marks	
7.			

Question Number	Scheme	Marks
(a)	$X \sim B(20, 0.2)$	M1 A1
(b)	S = 4X - 1(20 - X) S = 5X - 20	(2) M1 A1cso
(c)	E(X) = 4, $Var(X) = 3.2E(S) = 5 \times 4 - 20 = 0, Var(S) = 5^2 Var(X) = 80$	(2) B1, B1 M1 A1
(d)	$S \ge 20 \text{implies} 5X - 20 \ge 20$ [So $5X > 40$] $X > 8$	(4) M1 A1
	$P(S \ge 20) = P(X \ge 8) = 1 - P(X \le 7)$	M1
	= 1 - 0.9679 = 0.0321	A1
	2	(4)
(e)	[Let $C = \text{no. Cameron gets correct. } C \sim B(100, 0.4)$] $Y \sim N(40, \sqrt{24}^2)$ P($C > 50$) $\simeq P(Y > 50.5)$	M1A1
	$= \mathbf{P}\left(Z > \frac{50.5 - 40}{\sqrt{24}}\right)$	M1 M1
	= P(Z > 2.14) = 1 - 0.9838 = 0.0162 or 0.016044 (awrt 0.016) N.B. exact Bin (0.01676) Poisson approx (0.0526)	A1 (5)
	Notes	[17]
(a)	M1 for "binomial" or B(A1 for $n = 20$ and $p = 0.2$	
(b)	 NB this is a 'show that' so working must be shown M1 for attempt at any correct expression for S that uses 4 and -1 (1 may not be for correct expression derived. No incorrect working seen and M1 scored. 	seen)
(c)	1^{st} B1for $E(X) = 4$ seen. Condone $E(S) = 4$. May be implied by correct $E(S)$ or be seen in the calculation for $E(S)$ 2^{nd} B1for $Var(X) = 3.2$ seen. Condone $Var(S) = 3.2$. May be implied by correct $Var(S)$ or be seen in the calculation for $Var(S)$ M1for a correct formula for $E(S)$ or $Var(S)$ – follow through their $E(X)$ and $Var(X)$ may be implied by either answer being correct A1A1for 0 and 80 correctly assigned.	
(d)	1 st M1 for an attempt to solve the inequality for X 2 nd M1 for $1 - P(X \le 7)$	
(e)	1 st M1 for use of normal approx. and mean = 40 1 st A1 for Var = 24 or st. dev = $\sqrt{24}$ May be implied by later work 2 nd M1 49.5 or 50.5 3 rd M1 Standardising using their mean and their sd, If they have not written down a these need to be correct here to award the mark. They must also use 50.5, 49.5 or 50 a area ie using 1 - P(Z ≤ "their 2.14"), 2 nd A1 for awrt 0.016	a mean and sd then and find the correct

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA037002 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

